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'The exact formulas for the bias and variance of the product estimator
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*. rigorously established under weak and interpretable regularity conditions on
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SIGNIFICANCE AND EXPLANATION

Suppose we want to estimate the average acres of corn per farm (denoted

Y) in the state of Wisconsin based on a simple random sample of X values and

availaLe information on the size of each farm (denoted X). In this

particular instance, X and Y are positively correlated. It is common to

use the ratio estimator defined as (y-sample mean) 0 (x-population mean)/(x-

sample mean) as the estimator of y-population mean. The ratio estimator is

4very simple to compute and is efficient for a general class of populations.

In case X and Y are negatively correlated, the product estimator defined

as (y-sample mean) a (x-sample mean)/(x-population mean) is more efficient for

estimating the y-population mean than the ratio estimator. Its computation is

as simple as the ratio estimator. Sometimes we want to find a confidence

interval for the y-population mean. Since no exact finite-sample distribution

theory is available, we study the asymptotic normality of the product

estimator. Our regularity conditions are directly on the finite

populations. No artificial superpopulation model is assumed. The conditions

are weak and interpretable in practical terms so that the practitioners may

find them useful.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.
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THE ASYMPTOTIC DISTRIBUTION OF THE PRODUCT ESTIMATOR

C.-?. Vu' 2 and D.-S. Chang* 11'3

1 . Introduction

In sample surveys the ratio estimator YR = yX/x using a suitable

auxiliary variate X is one of the most commonly adopted estimates of the

population mean of character Y under study. In case both variates Y and

X are positive (or one positive and the other negative) and the corretlation

coefficient p between Y and X has high negative value (or high positive

value), the product estimator Y = yx/X is preferred. Throughout the paper

we assume the sample is obtained from simple random sampling (s.r.s). It is

known (Murthy, 1964) that the product estimator has smaller mean square error

than the unbiased estimator y , if p is smaller than minus one-half of the

ratio of the coefficients of variation of X and Y. Though the asymptotic

behavior of ratio and regression estimators was discussed in Scott and Wu

(1981), the corresponding results for the product estimator were not

satisfactorily given in the literature. Srivastava's result (1966) is not

rigorous, is for infinite population, and regularity conditions were not

spelled out. Had the conditions been given there, they would be unnecessarily

strong because his approach is not powerful enough. The technique of proof

for the ratio estimator in Scott and Wa (1981) does not work for the product

estimator. The key technical problem is that both y and x involve the

same random sample. As explained in more detail in section 3, standard

probability results can not be directly applied to this problem. The key

* National Tsing Hua University, Hsinchu, Taiwan.

I Sponsored by the United States Army under Contract No. DhAG29-80-C-0041.
2 Supported by the National Science Foundation under Grant No. MCS-7901846.
3 Supported by the National Science Council, Republic of China.
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technical tool employed in this paper is Hajek's projection method which has

proved successful for many other problems in statistics. We project the

product variable y x onto a linear space of random variables, thus obtaining

a variable of simpler form. We then prove the asymptotic equivalence of the

two variables. The asymptotic normality of the latter variable was proved by

usinq the Lindeberg-Hajek Central Limit Theorem. The required regularity

conditions are weak and easily interpretable.

In the next section we derive exact formulas for the bias and variance of

the product estimator. The asymptotic normality of the product estimator is

proved in section 3, using the projection method outlined in the previous

paragraph. The asymptotic consistency of a variance estimator is established

in section 4. Finally the two results are combined to give the main Theorem

3, which is followed by some remarks on regularity conditions.
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2. Bias and Variance of the Product Estimator

Before discussing the asymptotic results of the product estimator, we

first derive the exact formulas of the bias and variance of the product

estimator and use the latter to obtain an approximate variance in the large

sample case . The technique is the same as in Goodman (1960) or Sukhatme and

Sukhatme (1970, p. 190-192).

In population U - (1,2, ... ,N}, let f - n/N be the sampling fraction,

y and x be the sample means of simple random sample of size n of the

variates Y and X respectively, and Y and X be the corresponding

population means. Denote
NSa -(N-1)-1 -

ego (N-1 (yi)(Xi-X)

and (1)

C a= S xo , a,8 = 0,1,2

Then, we have the following

Lemma 1.

(i) E(y) Y(1 + - c
n 1

and
(ii) var(yx) = (yx)2(1-f){c0c221 +-1C -2

na(Y) (i21n (--2-) "(C 12 +C2
{C2 04+C02 +2C 1 1 + " [2 (N2N 121

+ (n-1)(N-1)(N-n-1) 2
n(N-2)(N-3) (C0 2 C2 0 4C 1 1 ) (2)

N-n C2] +1 N 2 t4-6nN+6n 2N 11l n 2  (N-2)(N-3) C22"

Proof.

Let

= xx)x, 8 y - (yY/ 3)

Then, using Theorem 2.3 of Cochran (1977), we have

-3-
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i4

E(yx) YX(I+E( 6y6x)] YX(I + 1-f C
n 1

Using results in Sukhatme and Sukhatme (1970, p. 190-192) and after some

simplication, we have

Var(yx) =E(yx) 2 - 2Ey)

2 (YXE[l5y)2(6x)2+2(6y)26x+26yx)2+(6y) 2+(6x) 2

i 2
4yx6+y-+2x+l] - CE(yx)]

(l-f {c  (H-2n)(
= ~ ( ) _2+C 2+2C + _1 ( _ )(C +C

(Cn 200211 L -2  21 12

(n-1)(N-1)(N-n-1) 2 N-n C2

+ (N-2) (N-3) 20 0 2 1 1) N

1 N 2 +N-6nN+6n
2

2 (N-2)(N-3) '22I n

Applying the results in Lemma 1, we have the following formulas for the

product estimator Y yx/XP
M - 1-f C4(i) ECY ) -Y = - CllY
p n

and

(ii) Var(Y ) n C C20 +C02 +CI1

+1 2 N-2n (n-1) (N-1) (N-n-i)

* (N-2 2112 n(N-2) (N-3)

2 N-n 2 -1

* (C C0+2C 2) -- C11 (4)
20 02 11 N 1I1j

1 N2 +N-6nN +6n
2

+ 2 (N-2)(N-3) C22

-4-
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The formula Var(y;) in Goodman (1960, (21), p. 712) differs from ours

in that Goodman's treatment of product is for sampling from infinite

population. We should point out that the coefficient of E in his formula

(21) should be n "2  instead of n-3 , a minor error which disappears as

n +

-

-i
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3 The Asymptotic Distribution of the Product Estimator

Following the usual formulation of the central limit theorem, we embed

our finite population in a sequence of populations, [Uv } , indexed by v

where nv  and Nv  both increase without bound as v + o And let

Is ) be a sequence of simple random samples with sample size n and sample
V

means Yv Xv of Y and X respectively in svo Similarly, let
V2and X be the population means of Y and X, S the population

v v vy

variance of Y in Uv, and fv - nv/Nv the sampling fraction. All our

results are based on the following two standard theorems in finite populations

(see Scott and Wu, 1981). We use -k-.> and P > to denote convergence in

distribution and in probability respectively.

Theorem A.

Suppose n v and N - n v + as v + Then, under simple random

sampling,

O N(O,1) as v + a

v vy

if and only if (y J satisfies the Lindeberg-H'jek conditionvj v'j

lim vj v 0 for any > , (A)
v w T (C) (N-1)S2

4 17 V y

where Tv (e) is the set of units in Uv  for which

lyvj -- Y v i n

/I --f Ssv
v VY

-6-



Theorem B.

Suppose {y } satisfies the condition

(1-f )S/n + 0 as v + (B)

Then, under simple random sampling,

(1) Ey v -ivl 0

and

(ii) Yv 0 as v + .

The main technical problem stems from the fact that both y and x

Involve the same set of indicator variables I, further complicated by the

dependency of Ii among i = 1,2,...,N. As far as we know, no existing

results in probability theory can be directly applied to our problem. We

project the variable &V = n yX onto the space of linear combinations of
Nv}= a

I, IN and establish the asymptotic equivalence of E and its

projection. Since the projection variable is a weighted sum of li, its

asymptotic normality can be established relatively easily.

For simplicity we drop the subscript v in all the derivations and

proofs.

Let I be the indicator of unit i in simple randm sample s without

replacement of size n. We can write the centered version of the product
2--

variable n xy as
N N

n = - E(&) = X Y [Ii I E(lIj)] 1 (5)
A_,i i=l j=1 NN

We project T1 onto the space Z of linear combinations of tIi Vi.e.,ii-i.

N
Z = {zlz k I ki , k i  is real-valued constant for i - 1,...,N)

i=I1

Let the projection variable be W. Then we have (Lehmann, 1975, p. 362),

'1 -7-



N
w I E(fIi) (6)

By taking conditional expectation, we have the following properties,

where f - n/N and f1 = (n-1)/(N-1),

Mi E(Ii )  f ,(i!) E(I iIj  ff 1

(7)

(iii) E(Ij Ii) = j_(n-I), (iv) E(I I ) = f - (n-2Ii)

for i # J # k = 1,2,...,No

From (7) we have (for details, see Chang, 1981)

N2 N(N-2n) 1
E(nl If) I f (dx1 +dy1  + (N-1)(N-2) i - N k I

for i = 1,2,...,N and from (6), we obtain

N N
W = a (I-f) = (bi+c)(I i-f) (8)i=1 i i 1

where ai 
i  b i + ci  and

2bi f - R(Sxi+6Yi'

N (N-2n)Nb(X =1 -X Y I X Y (9)

i (N1)(N_2)xY- iI XkYk)

k-1
and

xi -f
x = - , y , i = 1,2, ,N

X Y

Next, by (2.26) and (2.27) in Cochran (1977), we have

N 2 N
Var(W) = I (b i+c ) Var(I ) + I I (bi+ci)(bj+cj)Cov(Ii, 1I)

imi i j

- [f 1 (bi2ci+2bic1 ) Ni N (bib +cic +2b cj)]
La I - i j

-8-
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From iN b Ilci 0 and (9), we have

N 2 _12

" b 2 1 1bib N (N-1)(C +C +2C )

ijIi L1 I N-2 ii 20 02 11

1=1 ij 

(10)

(N-1)(N-2) C2
x [C2 N 2  11

3N-2
+ 2(C21 +C12 +C20 +C02 + 1 C+

and

N N N3 _ 2n) -2-2b bci = - b bcj= N (Nl n - 2-2 2
i=1 ij(N-2) 2  1+2120+C02+C1 "

iic bij 1 2 x Y(C 124C 21 C 20C 02+2C1)

Derivation of the identities in (10) follows easily from definition (9) and

formulas in Sukhatme and Sukhatme (1970, p. 190-192). Thus, finally we obtain

Va3(W) = n3(1-f)X2yi2 F(n-1)N2  12
(N-i (N-2) (C204C02+2C11

n(Nn-1) (-2)"
2 n- 1N2n)N (C 4C +C +2C
n(N_)2 (N-2)2 (C21 12 20 02 11

(11)
1 NN-2n1 12 IC (N-1)(N-2) 2

n2 L (N -1)(N2)i [ 22 +  N2  11

21 12 20 0 2 + N Cl+11

Further, by (5) and (6), we can deompose

n W+Q

and verify the identity

-9-



Varl) = Var(W) + Var(Q). (12)

Derivation of (12) is similar to that in Lehmann (1971, A. 168, p. 363). For

details see Chang (1981, Lemma 4.2).

Next, we want to demonstrate the asymptotic equivalence between n1 and

W as follows.

Lemma 2.

Var(n )/Var(W) + I as v + m provided

(i) n and N both + m as v +

(ii) v and C ,=,1,2 are all uniformly bounded in v

and

(iii) {C v20+C v02+2C V11v is bounded away from zero uniformly in v, where

C vo is defined in (1) for population Uv .

Proof.

Under conditions (i), (ii) and (iii), both Var(n) and Var(W) in (2)

and (11) are dominated by n 3YX2(C 20+C 02+2C 11) as v + W. This proves Lemma

2.

Similarly, under conditions (i), (ii) and (iii) of Lemma 2, both

Var[LNl b (I -f)] and Var(W) are dminated by n3Y x2(C0C0+2C asVa~iji i n20 4C02+2 i a

v + -. Therefore, we have

Lemma 3.

Under the same conditions as in Lemma 2,

N
v

Var(W )/Var[ [ b vi(I vi-f ) + 1 as v +=iv vi=i1

Now we let

-10-
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N
W ii oxi+6Yi)(Ii-f) = 36y

i= 1 ies

and (13
T(C) = + - > ElVar(W*) C > 0

Then, by applying the Lindeberg-Hajek Theorem A to Wk directly, we have

Lemma 4.

Let W* and T (E) be defined in (13) for population Uvo Suppose thatv v

n + and N-n as v+00. Then
4v v v

W-,/Var(W*) L-> N(0,1) as v +
V v

if and only if CXvj/X + Y j/YvI satisfies the Lindeberg-Hajek condition

(A).

Combining Lemmas 2, 3 and 4, we establish the asymptotic distribution of

the product estimator as follows

Theorem 1.

Under s.r.s,

V 'n(i 4y
V -L>N(0,1) as v +

4 (i-f i VC +C +2C
v v v20 v02 v11

provided

(i) n and N -n + 00 as v + 0,' :'"v v v

(ii) Ix */i + Y /Y i satisfies the Lindeberg-Hajek condition (A),V) V-vjvvv,j

(iii) x, Y and Cvao, a,0=0,1,2 are all bounded uniformly in v

*and

(iv) IC +C +2C I v is bounded away from zero uniformly in v.
•v20 v02 wii v

-11-
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Proof.

Decompose

I-- 4) Y -EY)P/n P P _

r WE2 0 +C0 2 
+2c

11  ( C20C02+2C 11

+ /I'-f Cl1

20 02 11

The second term converges to zero by condition (i), (iii), and (iv). The

first term can be rewritten as

W + Q w+Q (Var(W)

XY vC24C0 l Var(W) ) XY 'C2 0C +2C
n 3(1-f) 20 02 +2,1 N )i n 3(1-f) 20 02 +C11

where, by conditions in (i), (iii), (iv), Lemma 2 and (12),

, Var(W) 3 X 4C02+2C + 1

/a n (1-f) 20 02 11

and

Q/va-r(W) -> 0 as v + .

Write B= =1 b(Ii-f), C= c(Ii-f) and by (8), we have
i i i= ii

W B /Var(B) C____= -4.+
,(Var(W) Var(B) Var(W) /_r(w)

Then, similarly, by conditions (i), (iii), (iv), Lemma 3 and (10),

C//Var(W) -E> 0

and

-12-
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Va-r(D)/Var(w) -> 1as v +

Since, by (9) and (13),

B ___

(V-ar(B) vVar( W*

which converges in law to N(0,1) by Lemma 4. The proof is omupleted by

applying Slutsky's Theorem.

-13-



4. Variance Estimation

In practice, of course, y2 (C2 0+C02 +2C11) is unknown and is estimated by
i ~-2 "

its sample analogue y (c20+c02+2c 
). Let

t 1-f -2

v(Y n Y (c 20+c0 +2c )

be an approximate variance estimate of Var(Y ). Then, we prove the
p

consistency of v(Y )as follows.
p

Theorem 2.

Under s.res.e,

"--2

v(Y 1-f ( C +
VP n )y v%20 v02+2 ,) _> I as v +-

provided

) n + and N + as v + c,

(i() (( -Xv)2/Sv02 v,j and {(Y vj-yv) 2/Sv20 vj both satisfy

condition (B) of Theorem B.

(iii) x, Yv and Cvas , Q,0-O,1,2 are all bounded uniformly in v

and

(iv) (P2v and (C Cv20 Cv02+2C V11 both are bounded away from zero

uniformly in v, where pv  is the population correlation

coefficient of X and Y in U

Proof.

Write r
v(i )/(I-f),(C 4C +2C 11 )-I ((C )-C.op n 20 02 20 02 11 Y 0

+ 2 [)2cii]}C2 C 01+ 2 C11"-C11

-14-
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.1
where,

I (.) 2-o = C02 [s 2(i )2  ]
2 s

C -C = C -'0

- 20 -C20 20 S2Y

and

c -C s
11 11Y lxY

By condition (iii), the uniform boundedness of C and Cv0 2  imply

v20 0 n v2 ml

that the variances of x/X and y/Y converge to 0. Together with the

unbiasedness of x and y

x y
Further, by condition (ii) and Theorem B, we have

F" 02 p 1 20 p> 1 .

S0 2  $20

Finally, since
a 

P)

s-1 = .i. s1r 22 0 )

S P
112002

which converges to zero in probability by the uniform 
boundedness of (p 2,

condition (ii) and the proof of Theorem 4 of Scott and Wu (1981, p. 101.)

Hence we complete the proof.

15
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5. The Main Result and Some Remarks

By combining Theorems I and 2, we state the main result of the paper.

Theorem 3.

Under s.r.s,

rnv( p-Y V 
0-> N(0,1 )

(?T .c -+c +2c
v v v20 v02 v11

as v + U provided

(i) n + and N -n + m as v ,v v v

(Ui) x vj/i v + Y vj/vv'j satisfies the Lindeberg-Hijek condition (A),

(ii) {(X vj-xv ) 2/S v02}Vj and ((Y vj-Y v)2 /S v20 both satisfy condition

(B) of Theorem B.

(iv) Xv' Yv and CvB, aB-O,1,2 are all bounded uniformly in v

and

(v) (P1 and C 4204C02 +2C11 both are bounded away from zero
v v0v2 VII

uniformly in v.

Remarks.

A
Condition (ii) says that the contribution to the total sum of squares of

the (X1/X + Y /Y)'s from gross outliers about their mean value should be

relatively small. Condition (iii) on Yj and Xj suggests, respectively,

that the coefficient of variation of y and x should be reasonably small.

Condition (iv) is weaker than the more typical assumption in the literature

(e.g., David and Sukhatme, 19741 Krewski, 19781 Krewski and Rao, 1981):

Xv, Yv' C v0 0 X , Y , C., as v + -. Condition (v) is assumed to avoid

trivial cases and is satisEied in most practical situations.

-16-
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